If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3^5x)(1/9)^1-4x=81^x+1
We move all terms to the left:
(3^5x)(1/9)^1-4x-(81^x+1)=0
We add all the numbers together, and all the variables
3^5x(+1/9)^1-4x-(81^x+1)=0
We add all the numbers together, and all the variables
-4x+3^5x(+1/9)^1-(81^x+1)=0
We get rid of parentheses
-4x+3^5x(+1/9)^1-81^x-1=0
We multiply all the terms by the denominator
-4x*9)^1+3^5x(-81^x*9)^1-1*9)^1+1=0
Wy multiply elements
-36x^2-6561x^3=0
We do not support expression: x^3
| 21x+20=11x | | -5-6a=-5a | | (x-4)(x-3)=0.5x(x-4) | | 8^3x-9-12=500 | | 11y-215=30-24y | | 6-7x=6x+4 | | 4^3n+6=1 | | 6m^2=36m | | 1=3-v | | 2x+5=3x-70 | | -4=16/y | | 2x-19=19+x | | 2(t+17)=2 | | 2^3x+1=4x | | 5x+(1/2)=12 | | 3^y+4=(1/9) | | 2x+75=55 | | 4(x+3)+2(×+1)=-2(-4×-2) | | 2x+8=8x-8 | | (x^2/9)-4x=0 | | 10n-11n=-20 | | t/5=6/18 | | (-10q+9)(-2q-3)(8q-9)=0 | | 10r+4=88 | | -10n+5n=15 | | n(2n+1)=6 | | 56=f+29 | | 4z-19=173+2z | | 2x+8x+12=0 | | 56=f+299 | | 2(x+6)=0+12 | | 4x^2+2x-9=(-7) |